Jablite External Wall Insulation (EWI)

Key Benefits

- Lambda from 0.032W/mK
- 100% recyclable
- Off-cut collection
- Achieves an A+ rating in the BRE Green Guide to Specification
- Lightweight and easy to handle
- Flood proof and durable
- Can be cut to fit with a sharp knife
- Helps to achieve a high quality rendered surface
- Insulates for the lifetime of the building
- Achieves Fire Class E

Jablite EWI is manufactured from expanded polystyrene (EPS) and can be bonded or mechanically fixed to an external wall. It can be used in conjunction with a variety of render and cladding systems including timber or plastic weatherboarding, tile hanging and reinforced-render systems. When EWI is used in conjunction with rail boards, it is manufactured in sheets to suit any rail system and has profiled edges to assist installation onto the rails.

Jablite EWI Properties

Dimensions
Standard size: 1200mm x 600mm
Standard thickness: From 20mm – 200mm

Type
Jablite EWI is supplied as EPS 70 E (white) and EPS HP 70 E (grey) as defined in BS EN 13163. All our EWI contain a flame retardant additive to achieve Reaction to Fire Class E. Jablite EWI for use with a rendered finish should be “aged” material.

Easy to install
Jablite EWI is manufactured from expanded polystyrene (EPS) which is lightweight and easy to handle. It is easily installed and there is generally no need for specialised trades or equipment, therefore disruption to the building occupants is minimal.

Environment
EPS has been awarded an A+ rating by the BRE’s Green Guide to specification.

Permanent
Jablite EWI is rot-proof and durable and will remain effective for the life of the building; recommended fixing methods will retain the boards permanently in position. It also has the added advantage of being flood-proof.

Fire
Any necessary fire performance should be provided by the facing material and the system design.

Water vapour transmission
Jablite EWI offers significant resistance to the passage of water vapour, but should not be regarded as a vapour-control layer.

Condensation calculations covering typical environmental conditions show that the dew point of an external-wall insulation system will occur on the external face of the insulation. This is the ideal situation.
Jablite External Wall Insulation

Thermal Resistance (R-Values)

<table>
<thead>
<tr>
<th>Board thickness</th>
<th>EPS 70E white (thermal conductivity of 0.038 W/mK)</th>
<th>EPS HP 70 E grey (thermal conductivity of 0.032 W/mK)</th>
</tr>
</thead>
<tbody>
<tr>
<td>40mm</td>
<td>1.05m²K/W</td>
<td>1.25m²K/W</td>
</tr>
<tr>
<td>50mm</td>
<td>1.30m²K/W</td>
<td>1.55m²K/W</td>
</tr>
<tr>
<td>60mm</td>
<td>1.55m²K/W</td>
<td>1.85m²K/W</td>
</tr>
<tr>
<td>75mm</td>
<td>1.95m²K/W</td>
<td>2.30m²K/W</td>
</tr>
<tr>
<td>80mm</td>
<td>2.10m²K/W</td>
<td>2.50m²K/W</td>
</tr>
<tr>
<td>100mm</td>
<td>2.60m²K/W</td>
<td>3.40m²K/W</td>
</tr>
<tr>
<td>110mm</td>
<td>2.85m²K/W</td>
<td>3.75m²K/W</td>
</tr>
<tr>
<td>120mm</td>
<td>3.15m²K/W</td>
<td>3.15m²K/W</td>
</tr>
<tr>
<td>130mm</td>
<td>3.40m²K/W</td>
<td>4.05m²K/W</td>
</tr>
<tr>
<td>150mm</td>
<td>3.95m²K/W</td>
<td>4.65m²K/W</td>
</tr>
</tbody>
</table>

Accessory Products

Jablite Basetherm

Jablite Basetherm is a high performance insulation board that is designed specifically to insulate the plinth below the damp-proof course and provide an impact proof base board. It is made of expanded polystyrene which maintains the thermal performance of the insulation even in a damp environment and can be used in conjunction with Jablite external wall insulation.

Dimensions
Standards size: 1200mm x 1200mm
Standard thicknesses: 50mm or 100mm

Key properties:
200 Grade – High density EPS
Normal density: 30 kg/m³
Compressive strength – 200kPa
Tensile Strength – minimum 100kPa
Flatness – 3mm

Test to prove performance:
Compression testing to 10% - BS EN 13163
Tensile – EN1607

Jablite Rail boards

Jablite EWI Rail boards are a quick and effective way to dramatically increase the thermal performance of any building and can be applied with almost any render or cladding system to produce a full EWI system. They are often used for fast construction of new builds, but are also used to upgrade existing buildings and overcome surface irregularities.